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This paper presents the experimental and theoretical results of applying resonant acoustic
spectroscopy(RAS) to determine elastic parameters and losses in such consolidated granular
materials as rock and building bricks. First, the theoretical aspects of the RAS method are outlined.
A computer code for the rectangular and cylindrical samples was developed and tested. The results
of experiments on specimens of rock and ceramic brick are then described. Finally, a modification
of the previously published RUS algorithm is presented which permits a significant reduction in
computing time for elongated samples. ZD01 Acoustical Society of America.
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I. INTRODUCTION A typical algorithm of RUS is based on the Lagrangian
approach: a basis of eigenfunctions is substituted into La-
Among the fundamental characteristics of crystallinegrangian equations which leads to an eigenvalue problem.
and noncrystalline materials are their elastic constantsSince the infinite-dimensional eigenvalue problem cannot be
Knowledge of the elasticity tensor is very important, in par-solved in general, approximate variational methods such as
ticular, for geophysical applications, where elastic constantshe Rayleigh—Ritz algorithm are used which involve a finite
obtained from seismic data provide information aboutset of basis functions. Then, sorive approximate eigenval-
Earth’s interior structuré.Elastic constants are determined ues and the corresponding eigenfunctions are obtained. If the
as derivatives of the free elastic energy with respect to thaeries of basis functions is chosen properly, the lower eigen-
components of strain tensor. In the linear approximationyalues can be calculated quite accurately. For rectangular
when the elastic energy is quadratic in strain, the number ofamples, products of Legendre polynomials are typically
independent elements of elastic ten€gy, is, in the general used as basis functions for displacement.
case, 21. Symmetries of a specific crystal grdap crack/ In later works, products of power functions were sug-
pore distribution further reduce the number of independentgested as a basis. Visschetral® have pointed out that using
constants(e.g., 2 for an isotropic medium, 3 for a cubic basis functions of the formt'y™z" allows for a solution for
symmetry, 5 for hexagonal, and 6 for tetragonal samples of several different shap@kells, bells, cylinders,
There exist various methods for measuring elastic coneggs, potatoes, ejc.This approach is known as the “algo-
stants. They are considered in detail, for example, in Refs. &ithm of Ming/Migliori/Visscher.”
and 3. Until recently, most often used have been the methods The RUS analysis algorithm requires that RUS measure-
based on pulse propagation. However, along with an obviouments determine the natural frequencies of a sample with
simplicity, they have shortcomings associated with a relastress-free boundary conditions. Resonance oscillations are
tively low preciseness. In particular, errors are associatedxcited by one transducer. The second transducer measures
with high-frequency sound scattering by grains in rockthe amplitude and phase of the sample’s response. To obtain
samples: Another group is resonance methods based on théhe desired accuracy, one must minimize sample loading by
measurement of resonance frequencies of a sample and #re transducers. Ohfiproposed a method to control such a
inversion for its elastic parameters. Introduced as early as theading: a rectangular sample was supported by transducers
1960s-70s, they have attracted a broad interest relativelgt its opposite corners. The corners were used for contact
recently, with the development of computer data processingoecause the displacements have a maximum in these points.
These methods are known as resonant ultrasound spectrddnlike conventional ultrasonic pulse measurements where
copy, RUS. The method was designed first for samples o$trong coupling between the transducer and the sample is
spherical geometryLater, with the advent of the numerical needed, the RUS method is attractive in that the sample acts
solutions to inverse problems, it became possible to analyzas a natural amplifier due to resonance with a gain equal to
resonant frequencies of a sample of arbitrary geometry. Ithe quality factor, so that strong coupling with the source is
Ref. 3 it is stated that the RUS technique provides the highnot necessary.
est accuracy for elastic moduli determination. In our study we used the RUS technique modified for

1770 J. Acoust. Soc. Am. 110 (4), October 2001 0001-4966/2001/110(4)/1770/8/$18.00 © 2001 Acoustical Society of America



finding the complex elasticity tensor of large samples of = The displacement vectar can be represented as a se-
structured materials such as rocks and ceramics. Because rids:
the relatively low frequency range, this method is free of the
shortcomings of impulse measurements such as local scatter-
ing from local inhomogeneities, at least when the macro-The indexes;, n, andns in Eq. (1) are chosen to provide
scopic sample parameters are of interest, or the nondestruigtegration inside the sphere
tive testing is being performed. We also suggest a Ik|<K @)
modification of the RUS algorithm to significantly reduce the
computing time for prolate cylindrical bars often used inin the wave number space. The valuekotan be evaluated
experiments. Due to the large size of the rock samples itising a simple ideak =max()/min(V), where maxg) is
contrast to most of RUS measurement in crystals, the fremaximal frequency to be determined and riinis minimal
quency range for our measurements was between 1 and 4#hase velocity in the considered frequency range, @)in(
kHz. Thus, instead of RUSresonant ultrasound spectros- Sw<max(w). On the other side, the absolute value of wave
copy) we suggest the name RAB:sonant acoustic spectros- Vector can be evaluated ak|<K)
copy). n\2 [n)\2 [ng2

A first application of resonant spectroscopy to rock |k|:7-r\/(— +(—> +(—) , (5)
(granite$ is described in the early work by Birtkho used Ly L, Ls
a spherical sample and derived its elastic parameters. HenoghereL ; are characteristic dimensions of the sample. If the
the present paper can be somewhat considered a developamber of frequencies which have wave vectors inside the
ment of Birch’s work with the use of more recent RUS al- sphere Eq(4) is large enough and all sizésare of the same
gorithms, different materials and specimen shapes. The codgder, this coincides with the rule
developed here is applicable for both rectangular and cylin-
drical sample geometries. Experimental verification of the
code, including its modification for elongated samples, wagproposed in Refs. 7 and 5 for a nearly cubic shape. Neise
performed for rectangular parallelepipeds. Workability of therelated to the number of resonance frequencies to be deter-
modified code for thin cylindrical bars was tested by usingmined: N+ 1)(N+2)(N+3)/6.

Ui(X1,X2,X3) =, ¥ ,(X1,X2,X3). (3

n;+n,+ns<N, (6)

asymptotic analytical solutions. As mentioned, the Lagrangian approach is typically used
for such problems. As the Lagrangiéiga,) is stationary at
Il. BASIC RELATIONS FOR THE RAS METHOD natural frequencie&,, are the complex amplitudes of eigen-

modesg, all derivativesdl/da, must be zero. As a result,

resonance frequencies, can be determined as a solution for
As mentioned above, RAS analysis is based on the uskhe eigenvalue problertthe notation of Ref. 5 is usgd

of the variational principle and the Rayleigh—Ritz method, . -

i.e., an approximation of eigenvectors of variational equa- ¢ Eikvy@iy=Tikwy@y - @)

tions by a proper set of basis functiohg/e begin with out- Here the “mass” matrixE for a homogeneous sample is

lining the direct problem: finding the resonance frequenciesyeafined as follows:

Since the RUS algorithm is thoroughly described in, e.g.,

Ref. 3, here we omit all intermediate equations and concen- Eikvy:pw2<llfv|\lfy> Oik - (8)

trate on main results on which our program has been based w4 o

and then on the specifics of long samplesbsection E The Fo'r a hpmogeneou§ sample, the “rigidity” matdx can be

most usable sets of basis functions for a cylindrical sampl(¥"rItten in the following form:

A. General consideration

are products of exponents: R 3
x| x5 "2( 2| " Firy =2 Citai (M., gffiy i M. )
\Pv(xlaX21X3):(E> E) (W) ) .
The values of ¥,|¥ ) andb;, related to the basis func-

v={n;,ny,N3}, (1) tions W, are defined in the Appendix for both rectangular
and cylindrical geometries of a specimen.

As the tensoCjj is symmetricaf the matrixI” is sym-
metrical too. Because the matrix is positive definite, the
corresponding eigenvalues of E@) are real. Then, we can

se one of the standard methods to solve the problem in Eq.
7) (see, e.g., Ref.)9

In what follows we shall use this standard approach for

our experiments with RAS of rectangular specimens.

whereR andH are the radius and the length of the cylinder,
respectively. The basis E{l) can also be used for the rect-
angular parallelepiped shaffer the sake of brevity, we shall
occasionally refer to the latter as rectangular shalper the
analysis of our experiments with rectangular samples w
shall use Legendre polynomia§However, in the last sec-
tion we shall use the representation Et). as well:

2Xq 2X5 2X3
\PV(X11X2!X3):PH A Pn B
1 |_1 2 |_2 3 |_3 i - .
B. Calculation of dissipative parameters
v={ni,nz,n3}, @) For the materials considered here, due to their complex
wherel; are sides of the parallelepiped. grainy structure, losses are a very important characteristic
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which can, in particular, prevent using high-frequency im-constants in question. Random errors can be reduced by us-
pulse methods of testing. Usually losses in solids are deing a larger number of measured frequencies and solving a
scribed by small imaginary parts of elastic moduli. Such aeast squares problem. In general, numerous iteration algo-
description is valid for a wide range of frequenéfeand can  rithms and fitting criteria can be used to find the best ap-
be invalid only for specific conditions, for example, when proach for obtaining the values of the elastic constants with
grain sizes are compatible with the length of the elastidthe needed accurady.

waves. Therefore, the elastic moduli can be written as fol-  The problem is commonly formulated as one of minimi-
lows (the standard double-subscript notation is used b8low zation of the mean-square-root difference between the mea-
sured and calculated resonance frequencies or, more exactly,

Cu=1Ci=C(1 =), (10 of the corresponding functional. The latter can be defined as
where 7, are small dimensionless parameters representing N N
the internal friction normalized by the elastic constaDts. = \/2 (fn_?n)z/ 2 (fn)z’ (14)

In the paper in Ref. 11, a possible way to determine n=1 n=1

dissipation parameters was proposed. The main idea of this . .
. . . here f,, are calculated frequencies depending on current
paper is, in fact, the perturbation method: i.e., to use a RA } Ll . .
i . . . . alues ofC;;\ ; subscript ‘n” denotes the number in the list
solution for a medium without losses as a basic solution an I ) 9 )
then make corresponding adjustments. The resonance fr8f frequenciedin ascending ordgy f,, are the corresponding

quency of each mode is a function of the elastic mo@yli, _meas_L_Jreo! values of the frequencies. Exper_imental mode
the size of the sample;, and the material density. identification can be successfully used to eliminate ambigu-

ity and regular errors in the evaluation ©f;, .'* However,
wp=on(Cy,Lj,p). (1) such identification is a very complicated problem, and we
It is assumed that the functios, of all their arguments  did not use it here. In this paper we restricted ourselves to the
in Eq. (11) are regular. Using the Cauchy—Riemann condi-use of Ed.(14) to define fit error in the inverse RAS prob-
tions for the complex functions Eq11), written separately lem.

for each variable, one immediately obtaifell derivatives ~ The problem of finding medium parameters which mini-
correspond toC({ that are the solutions of RUS problem Mize the difference between experimental data and calcula-
without losseg 2 tions can be represented by a system of equations
dw, D, © d(p)=0, 1=1,2,...,n, (15
Aw,=2, ¢ ACk= 75 Cia' | _ .
ki 1 dCk dCy wherep=p,, ...p, is the vector of parameters to be deter-

(12  mined. In our case, functiond; in Eq. (15 are the differ-

Ack,), encesf(" = In terms of the extremal problem, the sys-
tem Eq.(15) is equivalent to the problem of minimization of

where AC,, are the adjustments of the real parts of elastiche function®

moduli due to losses) w,, is the perturbation of anth reso- n

nance frequencyp,= w,/29,,, and Q, is the Q-factor for D(P1.P2s - - Pr)=2 |di(P1.P2s - - - P2 (16)
the frequency, . If 9,>1, all terms in the first equation of =1

Eqs. (12) and,~consequentI3Awn are of the second order or of any other monotonically increasing function|df|. In
W'th respect tdo, . Hence, the change gf resonance frequen_’particular, the value of defined above can also be used as
cies due to losses can be neglected. Similarly, the last term e functionD.

the expression foi, can also be omitted. As a result, the
loss factorsy,, for the elastic moduli can be determined as a

solution of a linear set of equations:

dwp dwg
cO®, + "
ICy kI 7kl ICy)

wp=
Kl

To solve the problem Eq.16) by an iteration method,
one should start with some arbitrary valugi'. Then se-
quential approximations are created:

awn w k+1 3 Kk
E N~ _ N [ 1 [kl 1 splkl , (17)
“ aCkl Ck| Nkl ZQn . (13) p| p| p|

) ] ] which should converge to the “exact” valugs when k
For the overdetermined set of equations in Bd), 7y are  _

the medium parameters to be found. The measured values in 14 reduce the time of calculations, gradient schemes are
Eqg. (13) are resonance frequencies, and quality factors

] 1 usually used. In what follows we use Newton’s gradient
Q,,. From Eq.(13) one can also predid, using the tensor

method. Namely, one finds sequential approximations for

Mk - pl¥ as the solution of a set of linear equations:
" ad
C. Inverse problem d(pkhy+> = 5pJ[k]=0. (18
=1 j p:p[k]

Equations(7) and (13) allow one to solve a general di-
rect problem of resonant acoustic spectroscopy for sampleBhe convergence conditions for procedure Eif) are de-
with dissipation. To solve the inverse problem, one shouldined by the Kantorovich theorefn.
start with a guessed set of elastic constants in the direct prob- The number of measured and predictgdm the direct
lem and then use an iteration procedure to find the set gbroblem) resonance frequencies is typically greater than the
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number of parameters to be determined. In this case the so- Som,w] | Sample H Accelerometer I
lution of Eq.(18) can be obtained as that of the correspond-
ing least squares problem: l

Power amp

Sp=—(ATA)"1ATd, (19) amp

where sp=pl<*1—plk, A=(ad,/ap;), d is the vector of
functionsd,, and AT is a transposed matrix. We shall use @
this scheme in calculations presented below. Fanction J

—] ADC&DSP

Generator .| J
T ||

D. Test of the code

. - Lo FIG. 1. Block-diagram of experimental setup for measuring the amplitude-
To verify the workability of our code we applied it to the frequency response of tested samples. DSP—digital signal processor;

data given in the bodk(page 112, data for steel sample ADC—analog-to-digit converter.
5120. The corresponding parameters are: elastic moduli
Cy=2737210""Pa, C,=8.919010'°Pa, density p || EXPERIMENTAL SETUP, DATA PROCESSING, AND
=7790kg/n and sample size 3.0452.665x 2.645 mn. RESULTS OF MEASUREMENTS
Data presented in Ref. 3 were obtained fb+10 and the
inequality (6) was used. We used the same conditions in ou
calculations too. The difference in calculated frequencies ap-  The first tested specimen was a black rock of rectangular
pears only in sixth digit. Thus our code works as well as thakshape(from Zhitomir, Ukraine. The sizes of the parallelepi-
of Ref. 3 for rectangular geometry. ped sides wereL;=150.5mm, L,=114.2mm, andL;
To evaluate this code for cylindrical geometry, we com-=102.8 mm,; its mass walsl =5.435kg. The sample had a
pared its results with analytical models such as Pochgammefine granular structure with no visible flaws.
Chree equatioff for compression modes and Timoshenko'’s The block-diagram of the experimental setup for mea-
equations for flexural modeéAs is well known, these mod-  suring the amplitude-frequency response of tested samples is
els give a good approximation for long cylindrical bars. In- shown in Fig. 1. A function generator produced a frequency-
deed, as a cylinder becomes longer/thinner, the differencenodulated signal with the frequency swept linearly in time
between the corresponding asymptotic solutions and numeritnder computer control. After passing a power amplifier, the
cal calculations becomes negligiblsee Ref. 18 Both in-  signal was applied to the transmitting acoustical transducer
equalities(6) and(20) (see the next subsection for the latter which excited vibrations in the specimen. The receiving sen-
were tested to verify the code for the cylindrical geometry. sor (accelerometgrtransformed the specimen vibrations into
an electrical signal which was then amplified by a charge
amplifier and forwarded to the first input channel of the data
acquisition boardfADC&DSP). The transmitting and receiv-
ing sensors were thin piezoelectric plates 16 mm in diameter
To conclude the theoretical part, we suggest a usefuind 2.5 g made of lead zirconate titanate. Epoxy glue was
modification of RAS that may enable one to significantly ysed to attach them to the sample. The electrical signal pro-
save computer time when prolate objects Witt>L, 3(such  duced by a function generator was sent to the second chan-
as many borehole specimerae tested. In this case, the use nel. Both signals were used for signal processing by a DSP.
of the condition Eq(6) that actually supposes that the same-The signal from the receiving acoustical senémcelerom-
order amount of modal numbers is used for all sides of thestep, after frequency conversion by a function generator and
sample is excessive, and it is natural to accept the same ordelibsequent narrow-band filtering, was recoded into real—
of spatial scaleof the modes for each side to keep the samemaginary form and sent to the hard disk together with the
preciseness. For prolate samples we use the following naturgbrresponding frequencies. The total sweep time was chosen

fA. Experimental design

E. Modification of RAS method for prolate specimens

restriction on numbers; : according to theQ-factor values to record all peaks with
high accuracy. Th&-factors were about £0for measured
ng Ny N3 N modes so that all resonant peaks were resolved quite well. In

LG LT max L)’ 20 ihis case the positions of maximums coincide well with reso-
nance frequencies, and tlgzfactor for each peak could be

To obtain the same resolution in all directions, we keep aldefined from the peak width. In Fig. 2 the amplitude-
three terms in the left-hand part of ERO) comparable in frequency response of the rock is shown on a log-lin scale.
order [this is actually the reason for using may(in the  To reduce the influence of supports, the sample was hung on
right-hand side of that inequalilyAs a resultn; ,<n3z, and  thin threads. Simple evaluation of the resonances of the
instead of a sphere in the-space it suffices to consider a threads gives resonance frequencies of about 0.04 Hz for
prolate spheroid of a much smaller volume, practically with-transverse(“pendulumlike”) motions and about 4 Hz for

out an increase in error in comparison with the spherevertical oscillationgdue to thread elasticityAlso the effect

Eq. (6). of transducer masses on resonance frequencies was estimated
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FIG. 2. Amplitude-frequency response of the rock sample. FIG. 4. Amplitude-frequency response of the brick obtained for transmitter

in position 5 and receiver in position 2.

to not exceed a fraction of a percent. Therefore, at the fre-
quencies of 3 to 20 kHz used in the experiments, free boundsponse. We picked all local maxima in the amplitude-
ary conditions can be considered as a good approximationfrequency response which exceeded the background level by
The second sample tested as an example of a building—3 dB and moréas seen from Figs. 2 and 4, in most cases
material was a standard ceramic brick of rectangular shap#is ratio was much largerTo measure th&@-factors, we
having a lowerQ-factor (that is closer to that of some used the vicinity of a resonance maximum and represented
sandstone-type rocksThe sizes of the parallelepiped were this vicinity by a standard Lorentz shape. Taking advantage
L,=250mm, L,=125mm andL;=85mm; the mass was Of several transmitters and receivers, for each resonance the
M =5 kg. This sample had larger grains than the first oneamplitude-frequency response was chosen which gives the
also with no visible flaws. largest signal/background ratio.
To excite and measure all oscillation modes in the brick, ~ The corresponding frequencies aQefactors of the vi-
we put five small sensors to positions shown in Fig. 3. Bebrations in the samples were calculated according to the
cause of lower values of th@-factor, several positions of scheme described above. Tables | and Il demonstrate the re-
the emitter and receiver were used to resolve all resonarsults for the rock sample. Tables Il and IV demonstrate the
frequencies within the frequency band of interest. The thirdesults for the ceramic brick.
and the fifth of the sensors were used to excite acoustic vi-
brations in the brick and the others to receive them. The
transmitting and receiving sensors are piezoelectric plateB. Elasticity and loss parameters of the tested
(20 mm in diameter and 1 mm thicknade of lead zirconate Ssamples
titanate. Epoxy glue was used to attach them to the sample. A comparison of measured and calculated frequencies
Similarly to the first sample, the brick was hung on thin 5 G factors for the rock sample is given in Table I. The
threads. For example, in Fig. 4 we show the amplitudeean-square-root difference between measured and calcu-
frequency response of the brick excited by the transmitter ifgteq frequencies is 0.17%. Such a small error can, at least
position 5 and measured by the receiver in positio8@  partly, be caused by the small lumped impedance of the
Fig. 3. ] piezo-ceramics transmitters. Indeed, their total mass was ap-
Resonant frequencies and correspondixéactors were b oximately 5 g, while the specimen mass was slightly over
associated with local maxima in the amplitude-frequency reg kg. According to the estimate, the maximal frequency shift
due to the lumped impedance can reach 0.1%. We considered
this fit error as small enough, and no special procedures were
undertaken to reduce this effect.
O The results of inverse RAS problem solution are shown
in Table Il. To start the iterations for the elastic modulus, we
O performed special pulse-delay measurements for the com-
pressional wavethe result isC;~6380 m/$, whereas the
initial value of the Poisson ratiove=0.1) was taken from
standard tablés to define the shear modulus.
The sample has parameters which are rather close to a
basalt from the mantle tof C;;=0.81 to 1.04
X 10" N/m?, C,4,=3x 10", Poisson ratiov=0.23 and den-
FIG. 3. Sensor positions for experiments with the brick. sity p=3300kg/mi. This seems to agree with the fact that

<4

(W5 )
—
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TABLE |. Calculated and measured frequencies @athctors for a rectan-

gular rock specimen of 150:5114.2< 102.8 mni having a 5.435 kg mass

and considered isotropic. The number of polynomials is limited\Nby13
with the constraint Eq(6). Q-factors were calculated from E¢L3) after

finding the 7's.

TABLE Ill. The results of an inverse problem solution for a ceramic brick
of 250X 125X 85 mnt size and 5 kg mass considered isotropic. ValsEs
and 5Q were obtained as relative rms errors of the fisC;; are errors
corresponding to obtainedF.

C, (m/s) 3305.4
FrequenciegkHz) Q-factors C; (m/9 2155.1
Error Error N 0.13
0, 0, )
# Calc. Meas. % Calc. Meas. % C,, GPa 21.4(1—0.0040)
1 10.8051  10.8020 +0.03 1304 1441 —9.48 Cy4 GPa 9.11(1-0.0036)
2 13.9212  13.9510 —-0.21 1221 1601 —23.8 OF (%) 0.59
3 144560 14.4570 -0.01 1215 1415 —14.1 5Q (%) 21.3
4 165271  16.4760 +0.31 1303 1546 —15.7
5 171951  17.2460 —029 1292 1360 —5.02 ﬁgﬂ gia é'gg
6 181429 181350 +0.04 1261 1128 +11.8 s ra :
7 181692  18.1820 -0.07 1291 1256 +2.76
8  19.7260  19.6780 +0.24 1265 1513 —16.4
9 205777 206520 —0.36 1162 1311 —11.4 also be significant. A simple estimate shows that at the fre-
10 ;0-3399 50'3288 —8-85 1%0 12;‘5 +252-g quency of 10 KHz, the radiation alone limits tiefactor by
11 1.0045 1. -0.07 1265 1335 -5, : : ;
12 21.2718 21.2630 +0.04 1281 1291 —0.81 a meg?mu.rr;] 0:] abo:Jt 1o '_I'he gorrez;l)ondmg erroris com
13 219518 21.8910 +028 1285 1255 240  Parable with the values given in Table II. _
14 225604 225800 —0.09 1218 1280 —4.84 The results of inverse RAS problem solution for the
15 233352  23.3670 —0.14 1292 1461 —11.6 brick are shown in Tables Ill and IV. One can see a good
16 236955 237150 —0.08 1193 1444 -174  correspondence between measured and calculated resonance
17 25.0200 250050 +0.06 1226 1064 +15.2 frequencies. The errors i@ are larger in comparison with
18  25.4484  25.4000 +0.19 1149 934  +23.0 he fi le. As th | ¢ UGt icall
19 256512 256350 +006 1110 1188 —6.53 the |r_st sample. As the values of tligfactor are typically
20 26.0721  26.0650 +0.03 1260 1145 +10.0 3—4 times less than those for the rock sample, these errors
21 264261 264430 —0.06 1298 1243 +4.42 can be due to interference of neighboring resonances. Some

the corresponding site lies on the Ukraine’s shield known to
have reached a very shallow area.

ways to better resolve interferring resonances is the subject
of our present research.
Data in parentheses in Table IV correspond to the results

For comparison we performed the same procedure SUpgFABLE IV. Calculated and measured frequencies &actors for a ce-
posing that the specimen’s material is anisotropic with cubicgamic brick considered isotropic. The order of the polynomials was limited

symmetry. As there were n@ priori data regarding symme-

by N=17 with the constraint Eqg6) and, for data in parenthes€&0).

try axes, we aligned them along the specimen axes. From FrequenciegkHz)
Table Il it is seen that error remains of the same order as for .

. . . . . rror
an isotropic sample model. As there is no evident physical 4 Calc. Meas. %

reason for any systematic anisotropy, it can be concluded that

The values of th&-factor have greater dispersion than 2 3.717013.71702 373280 ~042(-042)
. 4 3 4.187 724.187 65 4.209 40 —0.51(-0.52)
those of resonance frequencies. T_hls seems natural because, 6.460 206.460 09 6.439 70 +0.32(+0.32)
the measure® is found from the widths of the correspond- 5 7.165 397.165 32 7.138 00 +0.38(+0.38)
ing resonance curves that are “contaminated” by neighbor- 6 7.2918%7.291 93 7.309 40 —0.24(-0.24)
ing resonances. Factors such as sound radiation into air may 7 7.428 627.428 54 7.409 80 +0.25(+0.25)
8 10.217210.2174 10.2780 —0.59(—0.59)
9 10.410710.4108 10.5400 —1.23(—1.23)
TABLE Il. The results of an inverse problem solution for the rock specimen. 10 10.883810.8837 10.7870 +0.90(+0.90)
Values of 5SF and 6Q were obtained as relative rms errors of the &t€;; 11 10.915210.9152 10.8540 +0.56(+0.56)
are errors which correspond to obtainéf.
Q-factor
Isotropic specimen Cubic anisotropy Error
C, (m/y 6366 6363 # Calc. Meas. %
S‘ (mis %523 359_0 1 +262.52(+ 262.53) 227.70 +15.29(+ 15.30)
C,, GPa 124.6(1—0.0011) 124.5(1-0.0011) g iggg'ggg ggg'ggg gsz'gg fggigfggi;
C,, GPa 45.25(1—0.0016) 45,06 (1—0.0017) : : : . ‘
C.. GPa 39.70(1—0.0008) 39.66 (1 0.0008) 4 +262.28(+262.29) 387.20 —32.26(—32.26)
oF (%) 017 017 5 +266.64(+266.64) 358.70 —25.67(—25.66)
50 (%) 13.3 13.3 6 +278.38(+278.37) 314.60 —11.51(-11.51)
: : 7 +270.85(+ 270.85) 336.40 —19.49(— 19.49)
AC,; GPa 210 0.39 8 +264.01¢+264.02) 231.00 +14.29(+ 14.30)
AC,, GPa 239 0.44 9 +276.06(+ 276.06) 309.00 —10.66(—10.66)
AC,, GPa 0.14 0.23 10 +274.90(+ 274.89) 316.00 —13.01(-13.01)
11 +272.74(+272.74) 188.00 +45.07(+ 45.07)

@Along the main crystal axis “100.”
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of calculations according to the code modified for prolate
samples. It is noteworthy that the use of the constraint Eq
(20) instead of Eq(6) enables us to reduce the time of cal-
culations by a factor of 10 with practically the same accu-
racy, even for the brick in which the ratio of different sides
does not exceed 3.

IV. CONCLUSIONS

b31: n3ﬁ173(n1+ﬁ1—1, n2+ﬁ2, n3+ﬁ3_1),
. b32: ngﬁzp(n1+ﬁ1_1, n2+ﬁ2_1, n3+ﬁ3),
b33= n3‘ﬁ373(n1+‘ﬁ1, n2+ﬁ2, n3+ﬁ3_2)

In the case ofectangular shapd is better to use a Legendre
polynomial expansion in the Ritz representation E). In

this case the values of interest are written as folldqvs,

L,, Ly are sizes of a rectangular specinien

This paper demonstrates that the method of resonant

acoustic spectroscopy can be effectively applied to large

L1L2L36V'y

; ) ; v y= , Ad
specimens of structurally inhomogeneous materials such as (W) (2n+1)(2n,+1)(2n3+1) (A4)
rocks and ceramics. After Birch who also worked with large nd
specimens, we utilized the more recently developed RU§’l
algorithms and applied them to large rectangular specimens. 200 7,0n7, Lol
Note th_at the nL_lmerica_lI program created and used here can bll:(2n2+1)(2n3+1) L, —mi
be applied to anisotropic samples as was demonstrated above
on a simple example of cubic symmetry. Also, a modification 5n353
of the method significantly reducing the numerical time for ~ P12=5——=L3F5 n Fri,
- 2n3+1 1M T2l
prolate samples has been suggested and verified. We suppose
that a further development will result in creating practical On,F,
tools for testing borehole samples and industrial materials, 13757 L2Fan Fngf,
. . . 2n,+1 1M N3ng
including those with defects.
5“3713
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5 ~
APPENDIX: MASS AND RIGIDITY MATRIX ELEMENTS __ MM - -
b23 2n + 1 Lanznan3n3!
As both cylindrical bars and rectangular parallelepipeds !
are important from the point of view of their practical appli- On,i,
cation, both these cases are considered here. b31:2r]2—+1L2FnlﬁlFﬁ3n3y
Cylindrical shape: 5 -
~ ~ ~ NNy
(W,|W,)=P(n;+Ty,ny+Tip,N3+Ti3), (A1) b32:2nl—+1|—1|:n2?12':?13n3,
where the function$(---) are defined as
26, %, 0n.k L,L
r 011+1 Cl’2+3 b _ 11 2h2 12 B
2R?H M= 2 ¥(2n+1)(2n+1) Ly M
(aDagt D) farfay with
Play,az,as)= 4 > 2, n>mand n+m is odd,
Fon= .
aj,a, are even M 10, otherwise,
L 0 otherwise, _ _ _ (A6)
(A2) (min(m,n))-(min(m,n)+1), n+m is even,

andI'(...) is thegamma functionR is the radius of a
cylinder andH is its length.
Values ofbij(---l---) are defined as follows:

by;=nMNP(n1+NH1—2, n,+MN,, nz+hg),
bi,=nN,P(n+MH;—1, n,+N,—1, nz+hy),
bis=nAsP(n;+H;—1, ny,+N,, ng+hz—1),
bo1=n,MP(N1+N1—1, ny,+T,—1, nz+Ts),
byr=n,N,P(N1+N1, Ny+H,—2, n3+Ty), (A3)
bos=n,nNzP(n;+M;, hny+N,—1, nz+hz—1),
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